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Abstract. We present an analytical formula for the ratio of the physical spin correlation length
of a two-dimensional Heisenberg antiferromagnet on a square lattice, and the one which is actually
computed in numerical simulations. This latter correlation length is deduced from the second
moment of the structure factor at the antiferromagnetic momentumQ. We show that the ratio
is very close to one, in agreement with a previously obtained numerical result based on the 1/N

expansion.

The two-dimensional Heisenberg antiferromagnet on a square lattice is one of the most
extensively studied systems in condensed-matter physics. The interest in this model is twofold.
On one hand, the Heisenberg antiferromagnet models a large number of real materials including
parent compounds of high-Tc superconductors. On the other hand, its low-energy physics is
adequately described by a field-theoreticalσ -model thus allowing one to find similarities
between condensed-matter physics and field theory.

The low-temperature behaviour of the Heisenberg antiferromagnet is understood in great
detail [1–3]. For short-range interaction, the ground state is ordered unless one fine tunes the
couplings between nearest and further neighbours. The ordered ground state is characterized by
a sublattice order parameter,N0, spin stiffness,ρs , and transverse susceptibility,χ⊥ = c−2ρs ,
wherec is the spin-wave velocity. At any finite temperature, however, the system is disordered
due to thermal fluctuations. The disordering means that the equal-time spin–spin correlation
function decays exponentially with the distance, as e−r/ξ . The length scaleξ is the physical spin
correlation length. Various approaches to 2D antiferromagnets all predict [1, 2, 4] that in the
renormalized-classical region(T � ρs), which we consider here,ξ is exponentially large inT
at lowT and behaves asξ ∼ exp(2πρs/T ). Equal-time spin correlations at large distances can
also be described by a static structure factorS(k) for k near the antiferromagnetic momentum
Q = (π, π). At finite temperatures,S(Q) scales asξ2 and is therefore also exponential inT .

The exponential temperature dependences ofξ and ofS(Q)have been verified in numerical
simulations [5, 6], and by analysing the neutron scattering and NMR data for La2CuO4 and
Sr2CuO2Cl2 [2]. The accuracy of numerical simulations is however so high that one can
not only check the temperature dependences but also compare the absolute value of the spin
correlation length with the exact expression forξ obtained some time ago by Hasenfratz and
Niedermayer (see below). Recently, two groups [5, 6] performed such a detailed comparison
and found a good agreement with the Hasenfratz and Niedermayer formula at very lowT .

This comparison, however, requires care, as in numerical simulations one in fact measures
not the physical spin correlation lengthξ , but another length scale which differs fromξ by a
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constant factor which is not necessarily close to one. The point is that in numerical simulations
one measures the spin structure factorS(k) in the momentum space. Meanwhile, the physical
spin correlation length is associated with the real-space behaviour of the structure factor: at
large distancesS(r) ∝ e−r/ξ . To extract thisξ from S(k), one has to move to theimaginary
k-axis. Thenξ−1 is the scale at whichS(k) has a pole:S−1(k = iξ−1) = 0 [2]. In numerical
simulations, however, the structure factor is evaluated only forreal values of the momentum
k. By agreement, the correlation length is identified as a second moment ofS(k) for k = Q,
i.e., asξ̃ = (−S−1(Q) dS(k)/dk2|k→Q)1/2 [5,6].

For the Lorentzian form ofS(k), S(k) ∝ ((Q− k)2 +m2
0)
−1, bothξ andξ̃ are equal to the

mean-field spin excitation gapm−1
0 and are therefore identical. However, the 1/N calculations

for the O(N) σ -model rigorously demonstrated thatS(k) has a Lorentzian form only in the
limit N → ∞, while for arbitraryN , and, in particular, for physicalN = 3, the momentum
dependence ofS(k) is different from a simple Lorentzian [2]. In this situation,ξ̃ and the
physical spin correlation lengthξ differ by some constant factor.

To proceed further, we quote the exact theoretical result [2–4]

ξ−1/m =
(

8

e

)1/(N−2) 1

0(1 + 1/(N − 2))
(1)

wherem is given by

m = T

c

(
2πρs/((N − 2)T )

)1/(N−2)

e−2πρs/[(N−2)T ] . (2)

This result is based on numerical results forN = 3 andN = 4 [4] and on 1/N expansion for
the O(N) σ -model [2,3]. ForN = 3, this yieldsξ−1/m = (8/e) ≈ 2.94.

No exact expression, however, is known forξ̃ . The 1/N expansion for the O(N) σ -model
yields [2]

ξ̃−1 = ξ−1(1 + 0.003/(N − 2)) (3)

where the factor 0.003 arises from numerical evaluation of some complex integrals [7]. A
formal application of this result to the physical case ofN = 3 yields almost identical values
for ξ̃ andξ . This agreement was cited in [5, 6] as a justification for comparingξ̃ extracted
from the simulations withξ .

A potential problem with this argument is that it in fact assumes that the result for anyN

can be obtained by just exponentiating the 1/(N−2) term (i.e. by replacing 1+(loga)/(N−2)
bya1/(N−2)). This exponentiation rule works for temperature-dependent corrections due to the
renormalizability of a classicalσ -model in 2D. For a quantum model, the renormalizability
is however not guaranteed, and there is a concern that the smallness of the 1/N correction
may be the result of a near cancellation between the two terms, only one of which survives for
N = 3.

To illustrate that this concern is justified, we review the large-N expansion forξ−1/m [2,3].
To first order in 1/(N − 2) this ratio behaves as

ξ−1/m =
(

1 +
1

N − 2
(log(8/e) + γE)

)
(4)

whereγE is the Euler constant. Comparing equation (4) with the exact result, equation (1), we
see that the exponentiation rule works, but only provided that oneneglectsthe Euler constant
in (4). The latter in turn accounts for the appearance of the0 function in (1) (recall that
0(1 + 1/(N − 2)) = 1− γE/(N − 2) + O(1/(N − 2)2). As0(2) = 0(1) = 1, the term with
the Euler constant actually does not contribute toξ−1/m for the physical case ofN = 3. In
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other words, to obtain the exact result forξ for N = 3, one first has to eliminateγE from the
1/N correction and only then exponentiate the rest.

The danger is that the same might also happen for the rescaling factor ofξ and ξ̃ , i.e.,
that the ratio obtained numerically to first order in 1/N may in fact contain the Euler constant
which would mask the actual value of the ratio.

In the present communication we address this issue. We compute explicitly the
T -independent 1/N corrections tōξ and show that the factor describing the rescaling between
ξ̄ andξ does not contain the Euler constant. This implies that the 1/N result for the ratio is
very likely to be reliable, and the rescaling factor for the two correlation lengths is very close
to one.

As an input for our calculations, we use the results of the 1/N expansion for O(N)
σ -model [2, 3]. AtN = ∞, the mean-field consideration is exact, and the static structure
factor is given by [2]

S(k) =
N∑
i=1

Sii(k) = TN2
0N

ρs

1

m2
0 + (Q− k)2 (5)

where

m0 = (T /c)e−2πρs/(NT ).

At finiteN , this simple expression is modified due to interaction between low-energy transverse
spin fluctuations. It has been shown in [2,3] that there exist two different types of 1/(N − 2)
corrections: singular ones which contain log(T /m0) and log(log(T /m0)), andT -independent,
non-singular corrections which account for the renormalizations of the overall factors in
S(k) andm. The renormalizability of the classical 2Dσ -model implies that logarithmical
and double-logarithmical perturbation series are geometrical and therefore can be simply
exponentiated. The non-singular 1/(N − 2) corrections however require special care, as
was demonstrated above. Collecting both singular and non-singular 1/N corrections and
exponentiating the singular ones, one obtains [2]

S(k) = 2πN2
0

N

N − 2

(
(N − 2)T

2πρs

)(N−1)/(N−2)

P (k) (6)

where fork comparable to the inverse correlation length

P(k) = 1

Zm2 + (Q− k)2 +6(k)
. (7)

Herem is given by (2), andZ and6(k) ∝ (Q− k)2 account for the temperature-independent
1/(N − 2) corrections.

The expressions forZ and6(k) have been obtained in [2] but not explicitly presented in
that paper. Here we list the catalogue of the results which we will need:

Z = 1 +
2

N

(
2 log 2− 1− 3

∫ ∞
0

dx log log
x +
√
x2 + 4

2

x

(x2 + 1)2

)
6(k→ Q) = −4(Q− k)2

N

∫ ∞
0

dx log log
x +
√
x2 + 4

2

x(7x2 − 2)

(x2 + 1)4

6(k = im) = −m
2

N

∫ ∞
0

dx log log
x +
√
x2 + 4

2

(
(x −
√
x2 + 4)2√
x2 + 4

− 6
x

(x2 + 1)2

)
.

(8)

For the two correlation lengths we then obtain

ξ−2 = m2Z

(
1 +

6(k = im)

m2

)
ξ̃−2 = m2Z

(
1− 6(k)

(Q− k)2
)∣∣∣∣

k→Q
. (9)
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Performing simple manipulations, we find that

ξ−1 = m
(

1 +
1

N
(2 log 2− 1− A)

)
(10)

where

A =
∫ ∞

0
dx log log

x +
√
x2 + 4

2

(
(x −
√
x2 + 4)2

2
√
x2 + 4

)
. (11)

Introducing

t = log
x +
√
x2 + 4

2

and integrating by parts, we immediately obtainA = −(γE + log 2). A substitution of this
result into (10) yields equation (4).

For the ratio ofξ andξ̃ , the same manipulations yield a more complex expression:

ξ̃ = ξ
(

1 +
1

N
(γE + I )

)
(12)

whereI = 3I2 − 14I3 + 18I4, and

In =
∫ ∞

0
dt

sinht log t

(2 cosht − 1)n
. (13)

Notice that the integralsIn are all convergent and hence are determined by energy scales which
are much smaller than the upper cut-off. At this scale, the system behaviour is universal, and
therefore the overall factor iñξ is the universal number. Note in passing that similar integrals
appear in the calculations of the d.c. Hall conductivity near the fractional quantum Hall critical
point [8].

To evaluate the integrals (13), we introduce the auxiliary function

8n(t) = sinht log2(−t)/(2 cosht − 1)n

and integrate8n over a contour which consists of a circle of infinite radius and a cut along
the positive realt-axis. The contour integral yields−4π iIn and simultaneously it is equal to
the sum of the residues (modulo 2π i) of the poles along the imaginaryt-axis. Performing
calculations and making use of the summation formula

∞∑
n=0

log(2πn + π(1− a))
2n + (1− a) − log(2πn + π(1 +a))

2n + (1 +a)

= π

2
(logπ − γE) tan

πa

2
−
∫ ∞

0
du

sinhua

sinhu
logu (14)

we can explicitly pull out the Euler constant from the integrals

I2 = −γE
2
− Ĩ2

2

I3 = −γE
4
− Ĩ2

12
+
Ĩ3

12

I4 = −γE
6
− Ĩ2

18
+
Ĩ3

36
− Ĩ4

36

(15)
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where

Ĩ2 =
∫ ∞

0
dx

logx

sinhπx

sinh 2πx/3

sin 2π/3

Ĩ3 =
∫ ∞

0
dx

x logx

sinhπx

cosh 2πx/3

cos 2π/3

Ĩ4 =
∫ ∞

0
dx

x2 logx

sinhπx

sinh 2πx/3

sin 2π/3
.

(16)

The analytical expression for̃I2 has been known for some time [10], whereas the ones for
Ĩ3,4 have been obtained very recently [9], It turns out that these integrals can be expressed
in terms of the derivatives of the Hurvitz zeta function dζ(x, α)/dx at x = 0,−1,−2 and
α = 1/6, 1/3, 1/2, 2/3, 5/6, 1. Explicitly, we obtained [11]

Ĩ2 = − logR0

Ĩ3 = 6 logR−1− 3 log 6
Ĩ4 = 36 logR−2 + 3 log 6

(17)

where

R−s = 0−s(1/3)0−s(1/2)
0−s(5/6)0−s(1)

(
0−s(7/6)0−s(1)
0−s(2/3)0−s(1/2)

)(−1)s

(18)

and the0s are the generalized Gamma functions introduced via

dζ(x, α)/dx|x=−n = log(0−n(α)/
√

2π)

(00 is a conventional0 function)
Assembling now all contributions toI and substituting the result into (12), we find that

the Euler constant is cancelled out. The rest is combined into

ξ̃ = ξ
(

1 +
1

2(N − 2)
log[6R8/3

0 R−8
−1R

−36
−2 ] + O

(
1

(N − 2)2

))
. (19)

This expression is the central result of the paper.
The next issue is how to account for the higher-order terms in 1/(N −2). Here we use the

same assumption as was proven to work forξ , namely that after the Euler constant is subtracted,
the rest of the O(1/(N−2)) correction can be exponentiated. Using this assumption, we finally
obtain

ξ̃2 = ξ2(6R8/3
0 R−8

−1R
−36
−2 )

1/(N−2). (20)

ForN = 3 this yieldsξ̃2/ξ2 = 0.993; i.e. the ratio is indeed very close to one. This result
may sound intuitively obvious, but we emphasize again that it is not based on any physical
reasoning and therefore had to be verified by explicit calculations. This is what we did.

The extreme closeness of the ratioξ̃ /ξ to 1 is consistent with recent claims that at
T → 0, the numerically computed spin correlation length [5, 6] approaches the Hasenfratz–
Niedermayer result, equation (1).

Using our expressions forZ and ξ , we can also compute the overall factor for the
structure factorS(Q). This quantity was also targeted in numerical simulations. The numerical
evaluation of the first 1/(N − 2) correction yields

P(Q) ≡ 1/(Zm2) = ξ2(1 + 0.188/(N − 2))

(see equation (6)). Exponentiating this result, one obtainsP(Q)/ξ2 ≈ 1.2. Numerical simul-
ations [6], on the other hand, reported that the actual rescaling factor is more than three times
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larger than this number. We performed analytical calculations along the same lines as the
above and obtained

P(Q) = ξ2

[
1 +

1

N − 2
(2γE − log 2 + 6I2)

]
(21)

whereI2 is given by (15). Substituting the result forI2 into this expression, we obtain

P(Q) = ξ2

[
1 +

1

N − 2
(−γE + 3 log(R0)− log 2)

]
. (22)

This result coincides with the one obtained earlier by Campostrini and Rossi [3], and cited
previously in [12]. We see now that the Euler constant is present in the perturbation series,
i.e. one cannot simply exponentiate the lowest-order result. Using the same procedure as
before, i.e., treatingγE as coming from the expansion of0(1+1/(N−2)), and exponentiating
the rest of (22), we obtain

P(Q) = 21/(2−N)0
(
N − 1

N − 2

)(
0(1/3)0(7/6)

0(5/6)0(2/3)

)3/(N−2)

ξ2. (23)

ForN = 3, this yieldsP(Q)ξ−2 = 2.149 which is about double the value obtained by formally
exponentiating the whole 1/(N −2) correction. Still, however, this result does not fully agree
with quantum Monte Carlo simulations at lowT which reportedP(Q)ξ−2 ≈ 4 for both
S = 1/2 [6] andS = 1 [13]. The series expansion results [14] reported a somewhat smaller
P(Q)ξ−2 ≈ 3.2 for S = 1/2. The reason for the discrepancy is not clear to us. Possibly, the
numerical simulations forS(Q)were not performed deep enough inside the asymptotic scaling
regime atT → 0. Another possibility is that something may be wrong with the exponentiation
of the first 1/N correction toS(Q), though this is unlikely in view of the fact that this procedure
definitely works for the correlation lengthξ .

We would like to thank V Adamchik, S Sachdev, M Troyer, R Wickham and M Zhitomirsky
for fruitful discussions.
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